API Tension and Burst – Work
NOTICE: Our Mathcad database got attacked and infected with a virus. Unfortunately, we’ve had to shut it down until further notice.
You can safely browse the pages, as the Mathcad server was separate to this main website, and was only accessible here. (We used something called an iFrame, which is like a window into a different website).
UPDATE 28th of January 2020: the virus happened just over a week ago. We’ve temporarily cut and pasted the text parts of the Mathcad pages rather than having blank pages there.
UPDATE 3rd of February 2020: We’ve been unable to recover the Mathcad worksheets and offer them in a format that provided total security to users. They were published a decade ago, and our IT people say that they would need a complete re-creation with the latest code and security fixes.
APPEAL: These 44 pages were created, and offered as a free resource for over a decade. We know from our website analytics that more than 1000 users visited each month. If only half of these regular visitors donated $20, we would have enough to create an even better solution. As you know, time is money, have these Mathcad pages saved you $20 in time over the years? We expect that they have, not to mention the learning opportunities provided to new engineers entering the industry.
Please, donate at least $20 as a one-off payment, to bring back the drillers Mathcad back as an always free to use resource!
YES! I’ve gotten value from the drillers Mathcad in the past, and a $20 is a very affordable way of saying thanks. I also want to preserve this tool for future engineers.
[tcb-script src=”https://plu.ug/n/d5equzho”][/tcb-script]
NO! I can’t or won’t donate to the restoration fund. I’m happy to spend a few minutes to offer a testimonial to help encourage the effort. These worksheets do have value. Offer Feedback.
Tubular Tension and Burst Strengths, release 5, issued 6 March 2008. Work version.
This worksheet exists in two versions. They are identical apart from the way they are formatted. The Work version hides intermediate calculations and allows the user to see the results just below the inputs. This is useful for quick “what-if” games, changing various inputs to see what works best. The JIT version displays all intermediate calculations, plus adds tutorial text to explain the methodology.
Description
This worksheet takes a set of inputs to calculate the burst and tensile strengths of a tubular. It uses the formulae defined in the referenced documents to calculate the tubing design parameters and will account for the effects of temperature, internal pressure and tension.
API monogrammed pipe is manufactured to tolerances specified in API Specification 5CT. The tolerance for wall thickness t is wide – the actual wall thickness can be 12.5% less than the nominal size and still be within API limits. Modern steel mills are capable of making tubings to much less than this tolerance and what usually happens in practice is that the tube is manufactured to use the least amount of steel, to maximise profit. The effects of these tolerances are documented in the JIT version of this worksheet.
User input
4.5″ 9.5 ppf4.5″ 10.5 ppf4.5″ 11.6 ppf4.5″ 13.5 ppf4.5″ 15.1 ppf5″ 11.5 ppf5″ 13 ppf5″ 15 ppf5″ 18 ppf5″ 21.4 ppf5″ 23.2 ppf5″ 24.1 ppf5.5″ 14 ppf5.5″ 15.5 ppf5.5″ 17 ppf5.5″ 20 ppf5.5″ 23 ppf5.5″ 26.8 ppf5.5″ 29.7 ppf5.5″ 32.6 ppf5.5″ 35.3 ppf5.5″ 38 ppf5.5″ 40.5 ppf5.5″ 43.1 ppf6.625″ 20 ppf6.625″ 24 ppf6.625″ 28 ppf6.625″ 32 ppf7″ 17 ppf7″ 20 ppf7″ 23 ppf7″ 26 ppf7″ 29 ppf7″ 32 ppf7″ 35 ppf7″ 38 ppf7″ 42.7 ppf7″ 46.4 ppf7″ 50.1 ppf7″ 53.6 ppf7″ 57.1 ppf7.625″ 24 ppf7.625″ 26.4 ppf7.625″ 29.7 ppf7.625″ 33.7 ppf7.625″ 39 ppf7.625″ 42.8 ppf7.625″ 45.3 ppf7.625″ 47.1 ppf7.625″ 51.2 ppf7.625″ 55.3 ppf7.75″ 46.1 ppf8.625″ 24 ppf8.625″ 28 ppf8.625″ 32 ppf8.625″ 36 ppf8.625″ 40 ppf8.625″ 49 ppf9.625″ 32 ppf9.625″ 36 ppf9.625″ 40 ppf9.625″ 43.5 ppf9.625″ 47 ppf9.625″ 53.5 ppf9.625″ 58.4 ppf9.625″ 59.4 ppf9.625″ 64.9 ppf9.625″ 70.3 ppf9.625″ 75.6 ppf10.75″ 32.75 ppf10.75″ 40.5 ppf10.75″ 45.5 ppf10.75″ 51 ppf10.75″ 55.5 ppf10.75″ 60.7 ppf10.75″ 65.7 ppf10.75″ 73.2 ppf10.75″ 79.2 ppf10.75″ 85.3 ppf11.75″ 42 ppf11.75″ 47 ppf11.75″ 54 ppf11.75″ 60 ppf11.75″ 65 ppf11.75″ 71 ppf13.375″ 48 ppf13.375″ 54.5 ppf13.375″ 61 ppf13.375″ 68 ppf13.375″ 72 ppf16″ 65 ppf16″ 75 ppf16″ 84 ppf16″ 109 ppf18.625″ 87.5 ppf20″ 94 ppf20″ 106.5 ppf20″ 133 ppf |
Select a casing
75 |
FCK |
Enter the temperature at the depth of interest. Temp =
80 |
Enter the number part of the steel grade eg for L80, enter 80 (units are kpsi). Gr =
1.15 |
Enter the design factor for burst. DFb =
1.25 |
Enter the design factor for tension. DFt =
Click here when any values are modified to update the result.
Results
Maximum possible pipe OD within API tolerances
Minimum possible pipe OD within API tolerances
API nominal wall thickness
Minimum possible wall thickness within API tolerances
API nominal ID
ID for minimum CSA within API tolerances
API Drift Dia
Nominal cross sectional area
Temperature Correction Factor
API Minimum Yield Strength, nominal, ambient
API Minimum Yield Strength, with TCF and DF
Pipe body API Minimum Internal Yield, ambient
Pipe body API Minimum Internal Yield, with TCF and DF
CHECK CONNECTION STRENGTHS vs PIPE STRENGTHS AND USE THE LEAST!!
Worksheet references
API Specification 5CT, 5th Edition, April 1 1995 “Specification for Casing and Tubing (U.S. Customary Units)”.
API Bulletin 5C3, 6th Edition, October 1 1994 “Bulletin on Formulas and Calculations for Casing, Tubing, Drill Pipe, and Line Pipe Properties”, also ISO/TR10400:2007 which is expected to replace API 5C3 during 2008.
API Bulletin 5C2, 21st Edition, October 1999 “Bulletin on Performance Properties of Casing, Tubing and Drill Pipe”.
Formulae for Temperature Correction Factor taken from the Exxon Casing Design Manual.
SG of steel from http://www.simetric.co.uk/si_metals.htm taken as 7.85.
Version 1 of this worksheet released on 11 January 2008.